UCRIL- 100195
PREPRINT

A SLAP for the Masses

Mark K. Seager

This paper was prepared for presentation at
"Methods & Algorithms for
PDE's on Advanced Processors"
Austin, TX
October 17-18, 1988

December 12, 1988

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

CIRCULATIUN LLAY
SUBIECT TO RECALL
BTN WEEKS

DISCLAIMER

This docament was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy. completeness. or useful-
ness of any information, apparatuy, product, or process disclosed, or represents that
its use would not infringe privately owned rights, Reference herein to any specific
commercial products. process, or service by trade name. trademark. manufacturer. or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

A SLAP for the Masses |

Mark K. Seager

User Systems Division
Lawrence Livermore National Laboratory

December 8, 1988

Abstract

A Sparse Linear Algebra Package (SL AP), written in FORTRANT77, for the iterative solution of
large sparse symmetric and non-symmetric linear systems is presented. SLAP Version 2.0 consists
of three levels of routines: “high level®, “core® and “utility.” The “core” routines implement the
following preconditioned iterative methods: ilerative refinement, conjugate gradient, conjugate gra-
dient on the normal eguations, bi-conjugate gradient, bi-conjugate gradient sgquared, orthomin and
generalized minimum residual. All of these methods do not require the data structure of the matrix
being solved nor of the preconditioning matrix, but do require the “user® to supply a matrix vector
product and preconditioning routines. The “high level® routines assume one of two specific data
structures and provide the required “user routines.” The preconditioners supported are diagonal
scaling and incomplete factorization. One of the SL AP data structures allows for the vectorization
of the matrix multiply and the backsolve of the incomplete factorization operations on machines
with hardware gather/scatter capabilities. We present results for SLAP on the Cray Y/MP and

Alliant FX/8 machines.

tThis work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Rescarch,
Department of Energy, by Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

UCRL-XXXX

1 Introduction

The Sparse Linear Algebra Package SLAP was conceived in 1985 in discussions with members of the

Computing and Mathematics Research Division at Lawrence Livermore National Laboratory [5]. It had
three basic design criteria:

1. Easy of use for non-experts.

2. Ability to switch between methods with a minimum of effort.

3. Utility routines to various matrix manipulations and viewing.

The package was then implemented mostly by Anne Greenbaum as a set of iterative and direct méthods
for use on the Cray X/MP supercomputers. The original data structure (SLAP Triad format, descried
in Section 4) has the advantage that it is trivial to use, but has the draw back that none of the matrix
vector operations vectorize. This version of SLAP also contained translation routines to various banded
and sparse data structures so that one could use sparse direct methods as well. The user interface was
simplified in that no workspace was required from the user: it was obtaﬁed from the system using Cray
Time Sharing System (CTSS) specific GETSPACE, RELSPACE memory allocation/deallocation routines and
Cray FORTRAN compiler (CFT) pointer statements. In addition a matrix viewer routine was set up to
utilize Livermore specific interactive graphics output devices (TMDS). We got comments back from the
users that they liked this type of user interface very much, but it was slow (due to the non-vectorizability
of the matrix vector operations) and was not portable (due to the memory allocation scheme and graphics
output devices).

In 1987 a new set of design goals were established:
1. Portability and conformance to SLATEC [4] standards.
2. Ease of use for the non-expert.

3. Vectorization of matrix vector operations.

.

4. Ability to switch between iterative methods with a minimum effort.

5. Utility routines for matrix manipulation and viewing.

UCRL-XXXX

SLAP was rewritten to conform to these new design constraints by Anne Greenbaum and the Author.
First, the internal memory allocation (via pointers) was done away with and the necessary workspace
obtained from the “user” via the subroutine calling sequence. This, of course, complicates the use of the
package (making sure one has given the right amount of workspace for various routines is quite error
prone, especially for non-experts), but until the FORTRAN standard is changed to handle some type of
memory allocation this is the best anyone can do while remaining portable. Additional modifications to
the package included a consistent naming and internal documentation (FORTRAN comments) conventions
based on the SLATEC standard. Finally, two new iterative methods were added for non-symmetric

systems: generalized minimum residual (GMRES) (9] and bi-conjugate gradient squared (BCGS) [10]

and the direct methods were dropped.

2 Data Structures

The core routines of SLAP are written in such a way so that the data structure of the matrix and
its associated preconditioner are only referenced referenced in the “user supplied” routines MatVec and
MSolve. Hence, the core routines are completely independent of the “user supplied” data structure.
This allows the package great flexibility in that any method can be plugged into a production code
environment (i.e., conform to a highly structured data environment) if the user is willing to go to the

work of writing preconditioning and matrix vector multiply routines.

Indexr Element Row Column

1 asy 5 1

2 ay,2 1 2

a1 a2 0 0 a5 2 :;’; ; ;

0‘2),1 aslz 0 0 0 5 ¢1'5 1 5
as3 0 a5 = 8 an. 5 3 (2.1)

0 0 0 G4q,4 0 7 a5.3 5 5

as.1 0 as 3 0 as.s 8 a:': 2 9

9 ass 3 5

10 G4,4 4 4

p 11 03’1 2 1

Figure 2.1: SLAP Triad Matrix Storage Format.

UCRL-XXXX

On the other hand, some code development environments do not 8o constrain programmers and they
may choose utilize a data structure supported by SLAP. In this situation the “high level” SL AP routines
can be used with a choice of two matrix data structures. The simplest data structure is that know as
SLAP Triad format (also known as “coordinate format”). See Figure 2.1. With this structure only
non-zeros of the matrix are stored, in any order, in one real array A. If the matrix is symmetric only the
lower triangle (including the diagonal) need be stored. Suppose nelt is the number of elements stored in
A. Then two additional integer arrays of length nelt, I and JA are needed in the SLAP Triad format
to hold the row and column indices of the matrix elements, respectively. This format is not the most
storage efficient, but it is trivial to set up. Unfortunately, the other drawback of this matrix storage
mode is that the matrix vector multiply and incomplete factorization backsolves (preconditioning step)

do not vectorize. So if the user decides, for convience, to use this matrix data structure the package

transforms it automatically to the SLAP Column format.

Indez Element Row ColumnPointer

1 a1 1 1
2 asz 2 4
agn a2 O 0 ais 2 :5'1 g g
azy a2 0 0 O 5 am 1 9.
0 0 a33 0 435 = 6 al" 3 12 (2.2)
0 0 0 agq O 7 P 5
as;; 0 a53 0 asp 8 a:': 2
9 ass 5
10 a5 1
11 a3s 3

Figure 2.2: SLAP Column Matrix Storage Format.

The SLAP Column format is similar to the SLAP Triad format in that the non-zeros of the matrix
are stored in a real array A and that the corresponding row indices are stored in an integer array IA.
On the other hand, this data structure differs from the SL AP Triad format in that the matrix elements
must be stored in a very specific order and the JA array a has completely different interpretation. In the
SLAP Column format all the non-zeros of the matrix elements must be stored by column starting with

column 1 and ending with column n, where n is the number of unknowns in the problem. Secondly, the

UCRL-XXXX

diagonal element must be the first entry stored for each column. The JA array is used in this context as
offsets into the A and IA arrays for the the beginning of the compressed columns. In order to simplify
coding, the last element of JA, JA(n+1), points to the beginning of column K+1, which is imaginary. See
the example in Figure 2.2. In other words, A(JA(k)) and IA(JA(k)) are the first stored matrix element
and row index for the k** column and JA(n+1) points just past the last stored matrix element and index.
An example of how to use this data structure a matrix vector multiply routine is given in Figure 2.3. It

is assumed that the matrix is symmetric and only the lower triangle and the diagonal are stored when
isym = 1.
subroutine MatVec(n, x, y, nelt, :m. ja, a, isym)

int , nelt, 1t »
r“.;gor :(nl)‘: y(n;?(:znel).t)j‘(‘) teyn

[
¢ Compute y = A*x.
c
do10i=1,n
y(i) = 0.0
10 continue
do 30 icol = n

ibgn = ja(:.col)
iend = Ja(1c01+1) 1
do 20 i = ibgn
y(ia(i)) = y(n(z)) + a(i)¢x(icol)
20 continue
30 continue
if(isym.eq.1) then

The matrix is symmetric. Lover triangle is stored.
Multiply by the transpose, ignoring the diagonal.

a0o0ao

do 50 irow = 1, n
jbgn = ja(irov)+1
jend = ja(irow+1)-1
if(jbgn.gt.jend) Go'ro 50
do 40 j = jbgm, j
y(irow) = y(:.row) + a(j)*x(ia(j))
40 continue .
50 continue
endif
return
end

Figure 2.3: Matrix Vector Multiply with SLAP Triad Format.

Note that the inrfer loops, do 20 i = ibgn, iend and do 40 j = ibgn, iend, should vectorize on

machines with hardware gather/scatter capabilities.

UCRL-XXXX
3 Preconditioners

Two preconditioners are supplied with the SLAP package. They both assume the SLAP Column
format (although the “user level” routines will detect SL AP Triad format and automatically transform
to the SL AP Column format). The first preconditioner supplied is the symmetric diagonal scaling (DS).

Suppose we are solving the linear system:

Az = b, (3.3)
For diagonal scaling this system is transformed to:
(D~¥AD-¥)(Diz) = D%, (3.4)

where D = Diag(A) is the diagonal of A. This corresponds to setting the preconditioning matrix
M = D and is the simplest of all preconditioners. It only requires that the diagonal be positive. The
benefits of this preconditioner are: 1) it reduces the iteration count on most “real world” problems; 2)
it vectorizes very nicely.

The other preconditioner used in SLAP is modified incomplete LU factorization (LU) (modified
incomplete Cholesky factorization (IC) if A is symmetric). Here, one chooses the preconditioning matrix
to be the LU (or LL* if A is symmetric) factorization of the original system without allowing any
additional non-zeros (fill-in) to be created. It has been shown that if A is an M-matrix or an H-matrix
(8] then the incomplete Cholesky factorization exists. In general the method can break down and SLAP
follows the strategy of Kershaw [7]: setting non-positive diagonal elements of the incomplete Cholesky
factorization to unity. For most problems that are not too ill-conditioned this preconditioning reduces
the iteration count substantially. On the other hand, the cost of computing the incomplete factorization
is non-trivial and the vectorization of the backsolves (which must be done on each iteration) is necessarily
done with short vectors and indirect addressing. Hence, modified incomplete factorization is not a clear

winner over diagonal scaling for all linear systems solved on vector supercomputers.

«

UCRL-XXXX

4 Iterative Methods

The SLAP package contains preconditioned iterative methods for both symmetric and non-symmetric
linear systems. Section 3 discusses the preconditioners supplied with the package. For symmetric
systems one can choose from iterative refinement (IR), Jacobi (JAC), Gauss-Seidel (GS) and conjugate
gradient (CG) iterative methods. The iterative refinement, Jacobi and Gauss-Seidel are included just
for comparison purposes and are not normally used for “real problems.” The computational Conjugate
Gradient algorithm used in this package is well known and can be found in [1]. See Table 4.1 for a
tabulation of storage requirements and work estimates for these methods. In Table 4.1 and Table 4.2 the
units of storage are: n (the number of unknowns), n! (the number of nonzeros stored in the lower triangle
of the matrix, including the diagonal), nu (the number of nonzeros stored in the upper triangle of the
matrix, including the diagonal), nelt = nu+nl—n (the total number of nonzeros stored), MatVec (the
number of operations required to perform a matrix vector multiply with the “user supplied” routine) and
MSolve (the number of operations required to perform a preconditioning step with the “user supplied”

routine). For the routines where SL AP provides the MatVec and MSolve the work estimates are given

in terms of n, nl, nu and nelt.

Basic Methods
Subroutine | Method ISTORE RSTORE Work per Iteration
SIR IR 0 3*n 2*n+MatVec+MSolve
SSJAC JAC 10 4*n 2*n+2*nl
SSGS GS nl+n+11 nl43*n 4*nl
SSILUR ILU IR || nelt+3*n+11 | nelt+3*n 4*n4-6*nelt
SCG CG 0 3*n 10*n+MatVec+MSolve
SSDCG DS CG 10 4*n 10*n+2*nl
SSICCG IC CG nl4+2*n+11 nl4+5*n 8*n+4*nl

Table 4.1: Storage and Work for Basic Iterative Methods.

The largest number of methods in SL AP are for non-symmetric systems. If the A matrix is positive
definite ((Az,z) > O for all non-zero N-vectors z), then one can apply conjugate gradient on the normal

equations (CGN) for £quation 3.3, viz.,
ATAz = ATb. (4.5)

Rather than form AT A directly, which may not have a very sparse structure, we rewrite the conjugate

UCRL-XXXX

gradient algorithm in terms of both A and AT. This then requires two matrix vector multiplies per
iteration (one of which by the transpose of the matrix). Hence, for CGN (and most of the other methods
for non-symmetric systems) the user must also supply a MTtVec routine (for the matrix transpose times
a vector operation) as well as a MatVec routine. CGN has not been used in the past due to the fact
that using the normal equations squares the condition number of the resulting iteration matrix. This
causes this method to converge very slowly. Recently, this method has gained some popularity due to
the fact that when a good preconditioner to AT A can be found it counteracts the effect of squaring the
condition number, thereby making the method competitive.

Bi-conjugate gradient (BCG) was proposed by Fletcher [3] for indefinite systems. It is similar to con-
jugate gradient in that it requires AT as well as A, but it also requires the transpose of the preconditioner
MT. Hence the user interface to bi-conjugate gradient requires four routines (MatVec, NTtVec, MSolve
and MTSolve). The theoretical properties of bi-conjugate gradient are not very pleasing. In particular, if
A is non-symmetric (the only case when one would BCG) then bi-conjugate gradient is not guaranteed
to reduce any quadratic functional (as in the case of conjugatle gradient). In practice this does not seem
to be a problem and if one has a good preconditioner bi-conjugate gradient is an effective method.

When the bi-conjugate gradient method is converging another algorithm developed by Sonneveld [10]
converges twice as fast: bi-conjugate gradient squared (BCGS). In addition to this quality bi-conjugate
gradient squared also does not require AT nor MT and hence is much easier to use. It has been observed
by the author and others that on problems where BCG is diverging BCGS will also diverge and twice as
fast! In addition, on problems where bi-conjugate gradient seems to stagnate (i.e., not reduce the error
for a large number of iterations) before converging, bi-conjugate gradient squared will more likely than
not end up diverging. Hence, it is recommended that one use bi-conjugate gradient on the problem one
wants to solve and if the convergence is acceptable then apply bi-conjugate gradient squared (with the

same preconditioner). Due the the modular nature of SLAP, it is very easy to switch between methods

r

in this manner.

Another extension of the conjugate gradient method to non-symmetric systems is orthomin (OMIN(k))

by Vinsome [6]. For this algorithm one chooses the next search direction as a linear combination of the

UCRL-XXXX

previous residual and k previous search directions so that the new search direction is A-orthogonal to
the previous k search directions. If one then chooses to minimize the norm of the residual along this
search direction then the orthomin algorithm is obtained. When k is chosen to be the iteration count
(i.e. one A-orthogonalizes against all the previous search directions) then orthomin is guaranteed not to
break down.

A Lanczos type extension of conjugate gradient for general non-symmetric systems can be found in the

generalized minimum residual (GMRES) method of Saad and Schultz [9]. It generates an orthonormal

basis from the Krylov subspace:
K(l) = span{ro, Aro, A’ry,..., A" 'ro}, (4.6)

where rp = b — Azq is the initial residual, via the Arnoldi process. GMRES finds the approximate
solution z; in the affine subspace zo + K (I) which has the minimal residual norm. This n-dimensional
least squares problem can be reduced to a smaller [-dimensional least squares problem. GMRES is
guaranteed to converge to the true solution in I < n iterations for any non-singular matrix A. Usually
however, a maximum value of /, denoted by k, is dictated by storage considerations to be very much
smaller than n. If the stopping test is not met within k iterations, the iteration can be restarted by
setting 2o = z; and applying the GMRES algorithm again, and so on. This algorithm is denoted by
GMRES(k), and is guaranteed to converge as long as A is positive definite. A default value of £ = 10
is used in the SLAP implementation of GMRES(k), but this value can be optionally set by the user.
In building up the Krylov subspace K(!) it is possible to estimate the error with H without having to
compute either the intermediate solution z; or residual r;. If one can utilize this “natural” GMRES(k)
stopping test, then the algorithm is very efficient.

See Table 4.2 for detailed storage requirement and work estimate for the non-symmetric methods as
implemented in SLAP. As in Table 4.1, the storage requirements and work estimates are given in terms
of n, k, MatVec and MSolve for the “core” methods and in terms of n, k, nl, nu and nelt for the “high
level” methods. The work description of GMRES(k) is not entirely accurate since the cost of restarting
is not accounted for.

SLAP 2.0 iterative methods, matrix vector and preconditioner calculation routines follow a naming

UCRL-XXXX

l Non-Symmetric Methods
Subroutine | Method ISTORE { RSTORE Work per Iteration
SCGN CGN 0 3*n 13*n+2*"MatVec+2*"MSolve
SSDCGN DS CGN 10 4*n 15"n+4"nelt

| SSLUCN | LU CGN nl4n411 nl4-3*n 17*n+12%n
SBCG BCG [1] 7*n 14" n+2*Mat Vec+2*MSolve
SSDBCG DS BCG 10 8*n 16*n4+4"nelt
SSLUBC _| LU BCG nl+nu+4*n+12 nl4-nu48*n 18*n+12"nelt
SCGS BCGS (] ™n 17" n+2"Mat Vec+2*MSolve
SSDCGS DS BCGS 10 8*n 19*n+4%nelt
SSLUCS LU BCGS nl4+nu+4*n+12 nl4nu4-8*n 21*n+12%nelt
SOMN OMIN(k) 0 n*(6+3*k)+k (11+-8*k)*n+MatVec+MSolve
SSDOMN | DS OMIN(k) 10 n*(7+3%k)+k (124+8"k)*n+2*nelt
SSLUOM LU OMIN(k) nl4nu+t4*n412 nl4m+4+n*(743%k)+k 1348"k)*n+4-6"nelt

 SGMRES | GMRES(k) 20 n‘_(‘—W)u (k+3)+1 _J‘_—L_sd‘—a*k ‘n+Mat Vec+ MSolve
SSDGMR | DS GMRES(k) 30 n*(k+7)+k*(k+3)+1 (143"k)*n+nelt
SSLUGM LU GMRES(k) || nl4+nu+4*n+32 | nH4-nou4n*(k4-7)+k*(k+3) {243%k)*n4-2%nelt

Table 4.2: Storage and Work for Basic Iterative Methods.

convention which, when understood, allows one to determine the iterative method, preconditioner and

data structure(s) used in the routine. The subroutine naming convention takes the following form:
PLF]1 [MID,

where P stands for the precision (or data type) of the routine and is required in all names, the format
code F denotes whether or not the routine requires the SLAP Triad or Column format (it requires the
Column format if the second letter of the name is S otherwise it is matrix storage format independent),
the optional M stands for the type of preconditioner used (only appears in drivers for ”core” routines)
and D is some number of letters describing the method or purpose of the routine. In this incarnation of
SL AP only single precision data types are supported {no double precision or complex data type routines
have been written). Hence, all routines start with the letter S. The brackets around S and M designate
that these fields are optional.

The possibilities for the preconditioning, K, field are: D (diagonal scaling); IC (modified incomplete
Cholesky factorization); ILU or LU (modified incomplete LU factorization). The description field, D,
possibilities are: IR or R (iterative refinement); JAC (Jacobi); GS (Gauss Seidel); BCG or BC (bicon-
jugate gradient); CG (conjugate gradient); CGS or CS (biconjugate gradient squared); GMRES, GMR
or GM (generalized ;ninimum residual); OMN or OM (orthomin); DS (diagonal scaling preconditioner
setup); D2S (diagonal scaling for normal equations preconditioner setup); 2LT (lower triangle precon-

ditioning setup); ICS (incomplete Cholesky decomposition preconditioning setup); ILUS (incomplete

UCRL-XXXX 10

LU decomposition setup); MV (matrix vector multiply); MTV (matrix transpose vector multiply); DI
(SLAP solve for diagonal scaling); LI and LI2 (SL AP solve for lower triangle preconditioning); LLTI
and LLTI2 (incomplete Cholesky SL AP solve); LUI and LUI2 (incomplete LU SL AP solve); LUTI and

LUI4 (incomplete (LU)T SLAP solve); MMTI and MMI2 (SLAP solve for incomplete factorization

preconditioning of the normal equations).

5 Utility Routines

The SLAP 2.0 package contains routines for manipulating data structures and for doing various matrix
I/O. A short list of the routines and their purpose follows.
SBHIN Single precision routine that reads in a sparse matrix in the Boeing/Harwell format.
QS2I2R Sorts, using the quicksort algorithm, into ascending order an integer array carrying along one
integer array and one real array. Can be used as the first step in transforming from the SLAP
Triad format to the SLAP Column format.
SS2Y SLAP Triad format to SL AP Column format converter.
SCPPLT Printer plot of the SLAP Column format. For large matrices, only the first 132 rows and columns
are displayed.
STOUT Prints out a matrix, right hand side and solution (or any combination which includes the matrix)
in the SLAP Triad format.
STIN Reads in a matrix, right hand side and solution (or any combination which includes the matrix)

in the SLAP Triad format.

6 Results

Four of the five préblems (SHERMAN1, SHERMAN2, STEAM2 and JPWH991) used in these test
came from the Harwell-Boeing sparse matrix collection [2]. SHERMAN1 is symmetric and arises from

a three dimensional black oil with shale barriers oil reservoir simulator on a 10 x 10 x 10 grid with

UCRL-XXXX 11

one equation at each grid cell. SHERMAN2 is non-symmetric and also arises from three dimensional
reservoir simulation. It is a problem that also involves simulation of steam injection into wells. The
grid for this problem is 6 x 6 x 5 with 5 equations at each grid point. JPWH991 is non-symmetric and
arises from circuit physics modeling. STEAM2 is non-symmetric and like SHERMAN1 arises from a
three dimensional oil reservoir simulator. This problem is modeling enhanced oil recovery techniques
by steam injection via 8 5 x § x 5 grid with 4 variables at each grid cell. The only other problem with
results listed below is the NASA 1824 problem from H.D.Simon. This is a symmetric three dimensional
structures problem. All these problems are considered difficult for both iterative and direct methods.
For iterative methods, the preconditioner is of vital importance. For all the results given below, only the
preconditioners supplied with the package (diagonal scaling and incomplete factorization) were used. No
effort was made to tailor a preconditioner to any problem. This then can be considered the worse case
for the iterative methods. Any production code developer would spend some amount of time adapting a
preconditioner specialized to the problem being solved. In particular, for the three dimensional problems

one would surely consider utilizing a preconditioner based on solving planes of two dimensional problems

or some block factorization scheme.

“Problem Descriptions
Problem Size | NELT | SymNrm | % NZ | RCond
NASA1824 1,824 | 20,516 0.000 1.23 | 4.77E-7
SHERMANI1 | 1,000 | 3,750 0.000 0.38 | 2.17E-4

JPWH991 991 | 6,027 0.092 | 0.61 | 4.03E-3
SHERMAN? | 1,080 | 23,094 0995| 1.98) 1.68E-12
STEAM?2 600 | 13,760 0.002 | 3.82| 353E-7

Table 6.3: Vital Statistics for Sample Problems.

All the above problems were solved with both direct methods (SGECO/SGESLand MA28) and iterative
methods in the form of SLAP version 1.0 (the original Triad data structure, etc.) and version 2.0 (new

column data structure, etc.). Table 6.3 gives the basic statistics for the test problems in terms of the
linear system size (Size), number of non-zeros stored (NELT), the SymNrm = “ﬁﬁ‘ﬁ—'n and percent
nonzero %NZ = %ﬁ’:; and the estimate of the condition number of the matrix Rcond = mEL:?on

The direct method SGECO was chosen in order to obtain the condition number estimate as well as

the factorization. The FORTRAN LINPACK implementation was used with hand coded level 1 BLAS.

UCRL-XXXX 12

For the MA28 runs the pivoting flag u = 1.0 (which implies partial pivoting for numerical stability) was
chosen so that the method was as robust as possible.

The problems were solved on the Cray Y/MP832 (SN1002) at the NASA Ames NAS facility and
the Alliant FX/8 (medusa.llnl.gov) at the Lawrence Livermore National Laboratory utilizing only one
processor. Both machines have hardware support for vector gather/scatter operations. In the tables
below the Cray Y/MP (single precision, 64 bit) results are given on the left hand side and the Alliant
FX/8 (double precision, 64 bit) on the right. The Time results are in CPU Seconds and the ITER
column is the number of iterations taken to solve the problems via the iterative methods to a tolerance
of 10~%. The Int and Real columns give the amount of integer and real workspace (respectively) required
by the various methods. These numbers include the matrix, preconditioners and workspace. The solution
and right hand side are not include in these statistics (since all methods must store these in the same
fashion). For these test the number of past vectors stored for the Orthomin method was varied between

eleven and one. For the GMRES method this parameter was varied between eleven and five.

_ Results tor NASA1824

Cray Y/MP832]| Alliant FX/8 Storage
Method TER | Time || ITER Time Int | Real
SGECO 48.79 548.79 1,824 | 3,328,800
MA28 98.89 1,069.03 || 265,237 | 193,239
SSDCG | 1,387 9.36 || 1,383 | 23823 [| 22,351 29,636
sdcg 1,386 | 18.49 || 1,382 | 760.47
SSICCG -5 -5 65,208 70,668
iccg 264 7.53 260 | 257.11
SSDBCG | 1,407 | 20.75 || 1,399 | 454.14 || 22,351 35,108
dsbeg 1,410 | 39.79 || 1,402 | 1,520.42
SSLUBC 280 8.93 269 | 181.36 || 70,681 76,140
ilubcg 281 | 17.14 269 | 531.01
SSDCGS | 1,463 | 21.48 || 1,232 | 1,240.31 || 22,351 35,108
SSLUCS 387 | 11.32 311 | 21822 70,681 76,140

Table 6.4: Time and Storage Results for NASA1824.

Table 6.4 gives the results for the symmetric system NASA1824. This problem is ill-posed enough
so that the conjugatre gradient method applied to the normal equations is not effective (i.e., did not
converge) with diagonal scaling and incomplete factorization as preconditioners. Also, the Orthomin
and GMRES methods did not converge for this problem. It is interesting to note that the incomplete

Cholesky factorization for NASA1824 broke down and had to be modified [7]. The modification then

UCRL-XXXX 13

produced a preconditioned system (M ~!A) that was not positive definite. This breakdown was noticed
by SSICCG and the iteration was terminated (and hence the ITER column shows the error return code
of —5), but the SLAP version 1.0 routine iccg did not and was in fact able to compute a solution
(not guaranteed by the mathematical theory). It is clear from these results that the diagonal scaling
preconditioner is not competitive for this problem. The best method (SSLUBC), discounting iccg whose
convergence is a matter of luck, was 5.46 times faster than the direct solve and 11.01 times faster than
the sparse method on the Cray Y/MP (similar improvements are observed on the Alliant FX/8). The

superiority of SSLUBC solution technique is also displayed in the much smaller amount of storage required.

_Results for SHERMANTI
Cray Y/MP832 J| Alliant FX/8 || Storage
Method ITER | Time || ITER | Time Int
SGECO 4.26 310.42 1,000 | 1,001,000
| MA28 0.59 14.41 || 26,124 18,752
SSILUR 514 1.88 472 | 44.30 |} 11,513 10,501
ilur 514 1.51 472 | 50.15
SSDCG 232 0.22 230 | 11.13{f 4,761 8,751
sdcg 232 0.25 230 | 14.77
SSICCG 39 0.16 40 4.37 8,137 11,126
iccg 39| o013 40| 475
SSLUCN 225 2.06 222 | 39.82 | 11,513 14,501
ilucgn 225 1.36 222 | 45.13
SSDBCG 232 0.87 230 | 1892 || 4,761 11,751
dsbeg 232 0.48 230 | 24.67
SSLUBC 39 0.37 40 7.59 || 11,5613 14,501
ilubcg 39 0.25 40 8.58
SSDCGS 199 0.38 186 | 15.07 4,761 11,751
SSLUCS 29 0.22 30 5.84 || 11,513 14,501
SSDOMN(7) 506 0.56 506 | 37.63 4,761 31,758
dsomn(7) 506 0.73 506 | 47.62
SSLUOM(3) 61 0.24 58 6.67 || 11,513 22,504
iluomn(3) 61 0.22 58 7.47
SSDGMR(11) 799 0.84 769 | 56.16 4,781 21,906
SSLUGM(11) 55 0.23 48 6.25 {| 11,533 24,656

Table 6.5: Time and Storage for SHERMANI1.

The SHERMAN1 problem turned out to be negative definite and this fact was detected by the SLAP
version 2.0 methods. The SLAP version 1.0 methods had various difficulties ranging from operand range
error to simply not converging So the problem was recast, yielding the results in Table 6.5. For this

problem the real winner was SSICCG. It was 27 times faster than SGECO and 3.41 times faster than MA28

on the Cray Y/MP. Because this method is so sparse (about 3.8 nonzeros per column) implying very

UCRL-XXXX 14

short vectors (average length of 3.8) for the column oriented approach of SLAP version 2.0. In this
situation the preconditioning, matrix multiply and the incomplete factorization algorithms are slower
than the Triad format scalar algorithms on the Cray Y/MP. Similar results were observed on the Cray
X/MP416 (not preséuted here). Here is the first qualitative difference in the results obtained on the Cray
computers and the Alliant FX/8. Even for these short vector the Alliant FX/8 vector gather/scatter
hardware was fast enough to give the advantage to the column orientated vector algorithms of SLAP

version 2.0. Undoubtedly, the cache system on the Alliant FX/8 played a major role.

Results for JPWH991
Cray Y/MP832 [| Alliant FX/8 Storage
Method ITER | Time || ITER | Time Int Real
SGECO 4.15 305.90 991 | 983,072
MA28 3.63 87.71 |} 83,349 | 52,649
SSILUR 126 | 0.558 120 | 15.10 |} 16,031 | 15,027

ilur 126 | 0.576

SSDCGN 180 | 0.675 181 | 16.00 || 7,029 | 13,955
dscgn 180 | 0.591 181 | 28.10

SSLUCN 31 0.350 30 . 16,031 | 18,991
ilucgn a1 0.309 30

SSDBCG 40 | 0.151 37 7,029 | 13,955
dsbeg 40 0.133 37

SSLUBC 16 | 0.194 14 16,031 | 18,991
ilubeg S 16| 0.173 14

SSDCGS 23 | 0.045

SSLUCS 11| 0.120 10| 3.03] 16031 | 18,991
SSDOMN(7) 43| 0.051 45| 435(7,02 (33,783
dsomn(7) 43| 0.094 45| 647

SSLUOM(9) 14| 0.099 14| 288 [16,031 | 50,715

iluomn(9) 14| 0.090
SSDGMR(9) 42| 0446
SSLUGM(11) 14| 0.092

Table 6.6: Time and Storage results for JPWH991.

The JPWH991 problem also turned out to be negative definite and the results summarized in Ta-
ble 6.6 reflect the solution of the recast system. Overall the nonsymmetric iterative methods were very
competitive for this problem (even the conjugate gradient applied to the normal equations: SSDCGN and
SSLUCK). The quickest (SLAP version 2.0) routine on the Cray Y/MP was SSDCS: over 80 times faster
than MA28 and over é2 times faster than SGECO. Again one can see the problems with short vectors on

the Cray Y/MP, but not on the Alliant FX/8.

The SHERMAN2 problem was the hardest problem for the iterative methods: most of which could

15

UCRL-XXXX
Results tor SHERMAN?2
Cray Y/MP832 Alliant FX/8 Storage

Method ITER Time || ITER Time Int Real
SGECO 5.39 392.32 1,080 | 1,166,400
MA28 34.42 1,223.92 || 289,938 177,614
SSLUBC 14 0.417 14 9.85 50,521 53,748
ilubeg 14 0.685 14 23.48
SSLUCS 8 0.327 8 8.01 50,521 53,748
SSLUOM(11) 15 0.327 15 8.70 50,521 85,079
iluomn(11) 19 0.495 15 17.48
SSLUGM(11) 10 0.305 11 7.35 50,541 64,704

Table 6.7: Time and Storage results for SHERMAN2.

not solve the problem. The methods that did work worked quite well in comparison with the direct

methods. The fastest routine was SSLUGN(11), beating MA28 and SGECO, on the Cray Y/MP, by a factor

of 113 and 18, respectively. MA28 suffered from a great deal of fill in and setting the pivoting parameter

u = 0.1 had little effect.

_____Results for STEAM2 _
Cray Y/MP832 || Alliant FX/8 Storage

Method ITER| Time || ITER Int Re
SGECO 1.00 600 | 360,600
MA28 2.10 62,961 | 45,039
SSILUR 1 0.132 1 29,933 | 29,321
ilur 1 0.151 1

SSDCGN 20 0.051 20 14,371 | 18,561
dscgn 20 0.155 20

SSLUCN 1 0.140 1 29,933 | 31,721
ilucgn 1 0.169 1

SSDBCG 8 0.020 8 14,371 | 18,561
dsbcg 8 0.063 8

SSLUBC 1 0.138 1 29,933 | 31,721
ilubcg 1 0.164 1

SSDCGS 5 0.008 5 14,371 | 18,561
SSLUCS 1 0.135 1 29,933 | 31,721
SSDOMN(7) 8 0.007 9 14,371 | 30,568
dsomn(7) 8 0.035 9

SSLUOM(1) 1 0.132 1 29,933 | 32,922
iluomn(1) 1 0.151 1

SSDGMR(5) 5 0.004 5 14,391 | 21,002
SSLUGM(5) 1 0.135 1 29,933 | 34,162

Table 6.8: Time and Storage results for STEAM2.

(4

The easiest problem to solve in this set is the STEAM2 problem (Table 6.8). The iterative methods

are vastly superior on this problem and give an indication of their power when utilized with appropriate

preconditioners. This problem is block banded matrix (multiple diagonals made up of 4 x 4 blocks).

UCRL-XXXX 16

The diagonal block seems to be quite dominate. Hence, the incomplete LU preconditioner performance
is spectacular and the diagonal scaling preconditioner is quite good. The best method is the SSDGMR(5)
due to the fact that the incomplete factorization is not cheap to calculate. SSDGMR(5B) is 525 times faster
than MA28 and 250 times faster than SGECO on the Cray Y/MP. The poor showing of A28 is due to a

large amount of fill in. Reducing the pivoting parameter u = 0.1 does not change the fill in behavior.

7 Conclusions

The SL AP version 2.0 is a significant improvement over the version 1.0 code in terms robustness flexibility
and speed. The latter improvement can be negated on the Cray X/MP and Y/MP class supercomputers
when the number of non-zeros per column is quite small. The iterative methods presented here are quite
competitive (even with very general preconditioners) with the direct methods on typical problems found
in industry. Typical speed-up’s of the iterative methods being between several to several hundred for

the sample results. For the more difficult problems even more improvement would be obtained utilizing

specialized preconditioners.

8 Acknowledgments

Many people have made contributions to SLAP 2.0, but the author would especially like to thank Anne
Greenbaum for the initail development of the package and the conversion work she did to make the
package more portable. The original code for the GMRES routines was obtained from Peter Brown and
Alan Hindmarsh. Peter Brown participated in the effort to mold the routines into the SLAP scheme.

Finally, NASA Ames NAS facility contributed non-trivial amounts of CPU time during the acceptance

test of the Cray Y/MP to this project

References -

{1] P. Concus, G. H. Golub, and D. P. O’Leary. A Generalized Conjugate Gradient Method for the

Numerical Solution of Elliptic Partial Differential Equations. In J. R. Bunch and D. J. Rose,

UCRL-XXXX 17

editors, Sparse Matrix Computations, pages 309-332, Academic Press, New York, 1976.

[2] 1. S. Duff, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM-TOMS, 0(0):To Appear,
1988.

[3] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. A. Watson, editor, Numerical
Analysis, pages 73-89, Springer-Verlag, Letcure Notes in Mathematics 506, New York, 1976.

[4] K. W. Fong, T. H. Jefferson, and T. Suyehiro. SLATEC Common Mathematical Library Source
File Format. Technical Report UCRL-53313, Lawrence Livermore National Laboratory, 1982.

[5] Anne Greenbaum. Routines for Solving Large Sparse Linear Systems. Tentacle News Letter,
Livermore Computing Center, Lawrence Livermore National Laboratory, Livermore, CA 94550,
January 1986.

[6] K. C. Jea and D. M. Young. On the Simplification of Generalized Conjugate-Gradient Methods for
Nonsymmeltrizable Linear Sysiems. Linear Algebra Appl., 52/53:399417, 1983.

[7] D. S. Kershaw. The ICCG Method for ‘the Iterative Solution of Systems of Lineer Equations. J.
Comp. Phys., 26:43-65, 1978.

[8] T. A. Manteuffel. An Incomplete Factorization Technigue for Positive Definite Linear Systems.
Math. Comp., 34:473—497, 1980.

[9] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 7(3):856-869, 1986.

[10] P. Sonneveld. CGS, a fast Lanczos-type solver for the nonsymmetric linear systems. Technical
Report 84-16, Delft University of Technology, Department of Mathematics and Informatics, Ju-

lianalaan 132, 262B BL DELFT, 1984.

